2020年11月24日 机器视觉与计算机视觉技术

智能高光谱成像与食品安全的未来

作者:Michael Bartholomeusz博士

传统的食品安全方法不再奏效,污染农产品或食源性疾病的报道似乎时不时的登上新闻头条。目前在世界各地为保护消费者和确保公司提供最新鲜、最安全的食品而制定的一些保障措施并不完善。监管不力的供应链和食品质量保证出现问题,往往会让消费者感到不适,并导致召回或诉讼,不仅要付出金钱代价,还会损害声誉。那怎样做才能防止这类问题的发生?

虽然传统的机器和人类的警惕性仍然是解决这些问题的首选解决方案,但前沿的智能成像技术有望消除由危及消费者安全的传统检测过程引起的问题。下一代成像技术将通过快速准确地检测整个供应链中的食品问题来提高安全性和质量。

智能成像的工作原理

广义上讲,我们今天讲的智能成像即高光谱成像,它使用尖端的硬件和软件来帮助用户建立更好的质量保证标记。硬件会捕获图像,然后软件会对其进行处理,将常规光谱技术与数字成像的功能相结合,为用户提供可操作的数据。

传统的机器视觉系统通常缺乏有效捕捉和向用户传递细节和细微差别的能力。相反,智能成像技术在两个主要领域利用了卓越的功能:光谱和空间分辨率。本质上,智能成像系统所采用的细节水平远远超过当前的行业标准设备。例如,RGB摄像机只能看到三种颜色:红色,绿色和蓝色。高光谱成像可以检测300到600种真实色彩,这是标准RGB摄像机检测到的色彩的100-200倍。

智能成像还可以扩展到紫外或红外光谱,提供在可见光谱中无法观察到的食品化学和结构成分的更多细节。高光谱成像相机通过生成“数据立方体”来做到这一点。这些是图像内收集的像素,显示出人类或传统相机无法观察到的细微反射色差。一旦生成,这些数据多维数据集将使用机器学习进行分类,标记和优化,以在将来更好地处理信息。

除了光谱和空间数据外,其他基本的质量保证体系也有其自身的局限性。 X射线的价格过高,而且仅聚焦于捕获异物。它们也很难校准和维护。金属探测器价格便宜,但通常只能捕获具有强磁场的金属,例如铁包括铜和铝在内的金属以及诸如塑料,木材和粪便之类的非金属物体都可以通过。

最后,当前的质量保证体系有一个弱点,这个弱点会随着时间的推移而改变:人的主体性。负责监督食品质量和食品安全的人员确实在尽最大努力。然而,众所周知,肉眼和人脑是不一致的。也许一个劳累的人在长时间的轮班结束时漏掉了一种污染物,或者那些在两个不同的轮班工作的人以稍微不同的方式判断质量,导致食品加工者和公众都不知道的不同标准。

高光谱成像可以立即为用户提供切实的利益,尤其是在食品供应链中的以下质量保证类别中:

病原体检测

病原体检测可能是消费者和整个食品行业最关注的问题。在整个供应链中识别和消除沙门氏菌、李斯特菌和大肠杆菌是必不可少的。显然,未能检测到病原体严重损害了消费者的安全。这还严重损害了食品品牌的声誉,同时导致了召回和诉讼。

当前的病原体检测过程包括聚合酶链反应(PCR),免疫分析和平板接种,涉及复杂而昂贵的样品制备技术,这些技术可能需要数天才能完成,并在供应链中造成瓶颈。这些延迟会对运营周期产生不利影响,并增加库存管理成本。这对于保质期短的产品尤其重要。智能成像技术提供了快速而准确的替代方案,在节省时间和金钱的同时保持了客户的健康。

食物新鲜度检测

消费者对食品的新鲜度、质量和一致性有很高的要求。随着全球供应链的延长和复杂化,食品在整个生产过程中的任何环节都有更多的机会发生变质,表现为营养成分的减少和食品新鲜度的整体丧失。受污染的肉类产品也可能使消费者患病。所有这些因素都会对市场价格产生重大影响。

感官评价、色谱和光谱学都被用来评估食物的新鲜度。然而,许多空间和光谱异常被传统的基于三刺激滤波的系统忽略了,而且从可靠性、成本或速度的角度来看,这些方法都有严重的局限性。此外,没有一个系统能够提供一种经济的在线新鲜度测量,当这些系统到位时,降低成本的财务压力可能会导致偷工减料。通过利用细致的数据并提供实时分析,高光谱成像通过同时评估颜色、水分(脱水)水平、脂肪含量和蛋白质水平来缓解或消除上述限制因素,为这些措施提供可靠的标准化。

异物检测

塑料,金属,石头,过敏原,玻璃,橡胶,粪便,啮齿动物,昆虫侵袭和其他异物的存在是食品加工商面临的巨大质量保证挑战。如果无法识别异物,可能会导致主要的额外成本,包括召回,诉讼和品牌损害。如上所述,X射线和金属探测器之类的自动选件只能识别某些异物,而其余的则保持不变。使用卓越的光谱和空间识别功能,智能成像技术可以捕获这些物体并向合适的员工发出警报,或启动自动化流程来解决问题。

机械损伤检测

尽管可能无法与病原体检测,食品新鲜度和异物检测处于同一水平,但是消费者还是对食品的均匀性给予了高度重视,要求从苹果到西葫芦的所有产品都具有高度的一致性。对于农产品来说,要确保这一点尤其困难,因为农产品在加工过程中会受到10-40%的机械损伤。越来越复杂的供应链和越来越自动化的生产环境使交付一致的质量比以往任何时候都更加复杂。

从历史上看,机器视觉系统和光谱学已被用于辅助分类设施中损坏的检测,包括擦伤和割伤。但是,这些系统缺乏光谱区分,无法以客户期望的严格方式有效评估食品和农产品。像点光谱这样的方法需要进行过度采样,以确保任何检测到的像差都能代表整个项目。这是一个耗时的过程。

智能成像技术运用卓越的技术和机器学习技术来识别对人类或传统机械不可见的机械损伤。例如,马铃薯在外部看起来可能不错,但是在其皮下有大量的瘀伤。高光谱成像可以发现这种瘀伤,并确定马铃薯是否太妥协而无法出售或在可接受的参数范围内。

智能成像可以“看到”人类和旧技术根本无法实现的功能。由于能够在食品供应链中的多个位置进行部署,因此它是一项具有广泛应用前景的适应性技术。从测量实地作物健康状况的无人驾驶飞机到加工设施的在线或线下定位,都有可能超越工厂范围。

在质量保证的世界中,误诊可能确实导致死亡,食品加工商可以利用高光谱成像提供的额外光谱和空间信息来提供有关化学系统和结构成分的重要细节,而这些化学成分和化学成分以前是基本系统无法识别的。当公司开始使用智能成像时,它将在食品行业寻求可应对其最严峻挑战的可靠解决方案时产生重要见解并增加价值。智能成像消除了食品质量保证的主观性,将其变成客观的目标。

Banner
Related Posts

机器视觉技术在农业应用研究进展

2019年3月31日

2019年3月31日

随着计算机软硬件、图像采集处理装置、图像处理技术的迅猛发展,机器视觉技术在农业的应用领域不断扩展。目前,美国、日本、德国等发达国家已经开始将机器视觉系统应用到农业生产的各个阶段,以解决人口老龄化加剧、劳动力缺失等问题引起的挑战。

机器视觉模式匹配的基础:光源、相机、算法

2019年10月11日

2019年10月11日

机器视觉系统还需要能够发现和识别模式。任何机器视觉任务的第一步都是模式匹配,即根据形状属性(如边缘)的预期排列,在视场中定位目标。这个过程是如何工作的?

机器视觉如何保持马铃薯片的风味完整

2019年4月23日

2019年4月23日

像Pepsico这样的食品和饮料行业巨头...

快速创建三维纳米结构图像的新方法

2019年4月17日

2019年4月17日

通过X射线激光脉冲从两个方向照射物体(在图像中心切出十字)。在下一步骤中,将星形衍射图像重建为3-D对象

机器视觉技术发展的五大趋势

2019年6月21日

2019年6月21日

在过去的一年里,人工智能(AI)、大数据、3D成像和机器人过程自动化等领域在取得了空前的发展。在即将到来的2019年,机器视觉技术应用还将蓬勃发展,新机器视觉认为五大发展趋势将引领行业应用。

为双目立体视觉插上FPGA翅膀

2019年10月10日

2019年10月10日

FPGA具有灵活高效、可重复编程特性,可实现定制性能、高吞吐量和低延迟,是十分灵活且强大的计算加速器。所以,很多研究机构将算法进行简化后,使用FPGA进行处理。

新型智能玻璃为机器视觉研究提供新的模拟途径

2019年7月18日

2019年7月18日

[据光电子网站2019年7月10日报道] 美国威斯康星大学麦迪逊分校电气和计算机工程系Zongfu Yu教授带领的团队开发出了一种新型智能玻璃。不需传感器、不用接通线路或外部电源、亦不需连接互联网,这种智能玻璃就可以利用光学反射的原理识别图像。

机器视觉应用的柔性开发

2019年9月12日

2019年9月12日

本文使用IBV软件MERLIC的例子,概述了图像处理的当前要求,并展示了如何在不编程的情况下创建应用程序。

工业相机调研凸显嵌入式趋势

2019年3月27日

2019年3月27日

据一项专业调查显示,机器视觉行业正凸显出向嵌入式视觉和模块化发展的趋势。制造商们看到了嵌入式视觉解决方案在汽车和基础设施应用方面的巨大潜能。

每个机器制造者都应该了解基于组件的3D视觉系统

2019年9月1日

2019年9月1日

在构建成本效益高的三维视觉系统时,是最好使用基于组件的方法(如照相机、激光、透镜、支架、校准目标)还是采用一体化(即智能)方法?乍一看,以较低的成本购买单个组件和构建定制的视觉解决方案似乎是更经济的途径。

深度学习在机器视觉系统中的应用详解

2019年4月24日

2019年4月24日

随着机器视觉技术的不断发展,系统在不需要计算机编程的情况下也可以具有分析和分类对象的能力。而人工智能(AI)和深度学习是推动机器视觉发展的重要技术手段。

机器视觉成为防治农作物减产的新式武器

2019年5月15日

2019年5月15日

农作物的损失对农民来说是毁灭性的。随着生态波动性的增加,这也是生活中的事实。

反光物体机器人机器视觉解决方案

2019年4月9日

2019年4月9日

SwRI和ROS-Industrial integrated intelligent parts reconstruction在ROS2框架内,用于提高工业机器人的三维图像感知能力,用于路径规划和路径点密集操作,如零件打磨。

研究人员开发了一种非侵入性果实成熟度检测方法

2019年6月25日

2019年6月25日

昆士兰的研究人员开发了一种新工具,可以在收获前评估芒果作物的成熟度,这可能会提高收获时间和果实质量。

如何利用机器人视觉进行拣货作业

2019年4月27日

2019年4月27日

机器人进行拣货作业定义了不同的过程,在这些过程中机器人用于从箱子中拾取和放置货物。 Bin pick是机器人领域中棘手的机器人任务。但是,您不必使用复杂的解决方案来解决它。使用机器人视觉的拣选可以以简单的方式执行。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注