2021年2月25日 机器视觉与计算机视觉技术

为什么数据科学在高级图像识别中很重要?

图像识别通常是一个图像处理的过程,识别人、图案、标志、物体、地点、颜色和形状,所有可以在图像中定位的东西。通过这种方式,高级图像识别是一个使用人工智能和深度学习的框架,可以在识别过程中实现更大的自动化。

由于视觉和语音是两个至关重要的人类交互元素,数据科学能够利用计算机视觉和语音识别技术来模拟这些人类任务。即使它已经开始模仿和杠杆在不同的领域,特别是在电子商务部门。机器学习的进步和高带宽数据服务的使用增强了图像识别的应用。

那么,数据科学如何帮助高级图像识别呢?

人脸识别

今天,数据科学工具已经开始识别人脸,并将人脸与数据库中的所有图片进行匹配。此外,配备了摄像头的手机正在创造无限的数字图像和视频。大量的数字数据被公司用来为客户提供更好、更方便的服务。通常情况下,人工智能的面部识别系统会解释人脸的所有特征,并将其与数据库进行比较,以找到匹配项。

检测物体

带有人工智能的数据科学工具不仅能够帮助用户进行人脸识别,还能够帮助检测相机中可用的对象。这些工具扫描所有对象并试图命名和识别它们。计算机可以利用机器视觉技术,结合摄像头和人工智能软件来实现图像识别。由于图像识别被用于处理大量基于机器的视觉任务,从使用元标记标记图像内容到执行图像内容搜索;视觉搜索是数据科学中最先进、最古怪的工具之一。

模式识别

除了识别人脸和检测图像中的物体外,数据科学还能够识别图像中的任何特殊模式,无论是面部表情还是纹理,并将其与数据库进行匹配。它还具有检测图像中出现的颜色和形状的潜力,并为用户提供对图像内容的适当了解。模式识别完全依赖于数据,并从数据本身派生出任何结果或模型。它是一种检测特征或数据排列的能力,这种排列可以产生关于给定图像或数据集的信息。

图像识别的应用范围包括智能照片库、定向广告和媒体的交互性,以及为视障人士提供无障碍服务和增强研究能力。大多数科技巨头,如谷歌、微软、Facebook等,都在图像识别和相关应用上投入了大量资源和研究。

预计到2021年,全球图像识别市场将从大约160亿美元增长到大约390亿美元。

Banner
Related Posts

基于田间高光谱图像和机器学习估计芒果成熟度的光谱滤波器设计

2019年8月15日

2019年8月15日

本文旨在通过模拟几个具有不同真实光学滤波器的成像设备,开发一种新型滤波器选择方法,并利用高成本成像高光谱设备为特定应用设计一种成本较低的多光谱解决方案。

用于太空星系检测的计算机视觉应用

2018年8月9日

2018年8月9日

观测天文学是天文学的一个分支,它涉及记录有关可观测宇宙的数据。地面和太空望远镜每晚用于观测行星和遥远的星系。专用望远镜仪器收集存储在远程服务器中的原始数据,然后使用多个图像处理和分析通道进行处理。

hotonic Vision通过视频开发激光雷达传感器

2019年5月8日

2019年5月8日

英国初创公司Photonic Vision开发了一种激光雷达飞行时间传感的颠覆性方法。

用3D绘制世界地图使我们能够用增强现实描绘街道

2019年4月19日

2019年4月19日

如果我们要获得真实的,针对特定地点的AR或精确的机器人交付服务,那计算机需要获得精确的导航地图。

计算机视觉究竟是个怎样的行业?

2019年6月20日

2019年6月20日

5月1日外媒消息,微软刚刚发布了 Windows Vision Skills 的预览版本,是一个 NuGet 包集合。

利用计算机视觉和机器学习技术实现莴苣种植的精准化作业

2019年6月11日

2019年6月11日

Earlham Institute的研究人员开发了一个机器学习平台,使用计算机视觉和航拍图像对莴苣作物进行分类。

视觉系统在零售业4.0中的作用

2020年1月6日

2020年1月6日

技术在零售购物中扮演着越来越重要的角色,这一发展被称为零售4.0。我们来看看计算机视觉是如何推动这场革命的。

图像处理中的深度学习技术

2018年8月9日

2018年8月9日

机器学习中的另一种技术是例如“超级矢量机”。与深度学习相比,必须手动定义和验证功能。在深度学习中,神经网络采用这一手动步骤:在训练过程中,独立地自动识别和提取特征。

计算机视觉的最佳图像注释平台

2019年5月10日

2019年5月10日

我们一直在寻找最佳的图像注释平台,该平台提供多种功能、项目管理工具和注释过程的优化(当您需要注释50k图像时,每个图像减少1秒钟!)。

为什么计算机视觉项目中选择OpenCV而不是MATLAB

2019年12月25日

2019年12月25日

在目前可用于计算机视觉的许多工具和库中,有两种主要的工具OpenCV和Matlab在速度和效率方面表现突出。在本文中,我们将详细介绍这两种方法。

计算机视觉软件市场的最新趋势

2018年8月9日

2018年8月9日

计算机视觉软件正在改变各个行业,不仅使消费者的生活更容易,而且让人产生兴趣。作为一个领域,计算机视觉已经获得了大量的宣传和投资。北美计算机视觉软件市场总投资额为1.2亿美元,而中国市场则飙升至39亿美元。

计算机视觉和图像处理之间有什么区别?

2018年8月9日

2018年8月9日

图像处理是计算机视觉的一个子集。计算机视觉系统利用图像处理算法对人体视觉进行仿真。例如,如果目标是增强图像以便以后使用,那么这可以称为图像处理。如果目标是识别物体、汽车自动驾驶,那么它可以被称为计算机视觉。

英伟达Jetson Nano定位于大众市场机器学习

2019年3月20日

2019年3月20日

GPU巨头英伟达(Nvidia)发布了用于大众市场产品的微型人工智能电脑Jetson Nano。

神经科学与计算机视觉合作可以更好的理解视觉信息处理

2019年5月8日

2019年5月8日

神经科学家和计算机视觉科学家表示,一个空前庞大的新数据集将帮助研究人员更好地理解大脑是如何处理图像的。

推动计算机视觉和视觉AI发展的四大关键趋势

2019年5月14日

2019年5月14日

本文讨论了推动视觉应用快速发展和影响行业未来的关键趋势,解释了这些趋势背后的推动因素,并强调了对技术供应商、解决方案开发者和最终用户的关键影响。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注