2020年9月20日 机器视觉与计算机视觉技术

自主机器视觉系统Inspekto S70

深度学习在机器视觉领域越来越受欢迎,它允许数据科学家为特定的、定义明确的任务仔细地创建模拟人类决策的程序。

随着制造商寻找智能机器视觉系统,深度学习越来越广泛。根据ABI Research的一份报告,基于深度学习的机器视觉方法将显示,2017年至2023年间,智能制造业的年均增长率将达到20%,营业额将高达2023年,达到340亿美元左右。

但是由于它们的成本和所需的长时间停机时间,在机器视觉解决方案的实现上存在着巨大的障碍。许多制造商无法安装机器视觉系统,因为它要么太贵,要么技术太复杂。

此类机器视觉解决方案的提供者通常以这样的方式进行操作:将软件作为单独的软件包出售,然后与其他所有其他组件组装成一个高技术性的解决方案。然后,可以使用此解决方案在特定生产线上特定位置检查特定产品。即使先进深度学习的解决方案也没有实现真正的灵活性。

系统集成商成为过去式

由于实现过程如此复杂,制造商通常需要一个系统集成商来选择照明、相机、通信和控制等。系统集成商也为机器视觉软件选择深度学习软件,因为制造商不具备独立建立、操作和培训传统深度学习解决方案的内部专业知识。

由于传统解决方案缺乏灵活性,生产线的任何变化都意味着制造商必须再次依赖系统集成商的专业知识。然后,这将调整解决方案,例如通过开发新的照明条件。然而,也可能是调整是不可能的。在这种情况下,制造商必须用一个全新的解决方案替换visual QS解决方案,即昂贵、耗时的过程重新开始。

复杂训练

一个具有深度学习的机器视觉解决方案在创建之后,需要一个复杂的训练过程。用户必须向解决方案提供成百上千甚至有时甚至上百万个错误模式,以便了解错误产品的外观。系统集成商必须定义机器学习参数,如数据扩展、网络拓扑或最终分类阈值。

开发、安装、安装和培训过程通常需要几个月,导致长时间停工或迫使制造商采用人工目视检查,这是一种不可靠和昂贵的方法。

这意味着最终用户不会期望从深度学习软件中直接获益;他与为其制造设施开发的视觉质量保证解决方案(QS)没有直接交互。他只能希望当前的深度学习软件能像系统集成商承诺的那样,提高他的可视化QS解决方案的质量。

自主机器视觉系统

为了改变这种状况,Inspekto推出了市场上第一款自主机器视觉产品Inspekto S70,制造商可以完全控制其视觉QS。最终用户现在可以在不到一个小时的时间内建立一个全面运作的质量保证体系。

系统的设置过程:在左侧,系统需要进一步的样本来学习待测位置的特征。在右边,系统显示它有足够的信息并准备好接受检查。(图片:Inspekto)

配置需要20到30之间的合格产品样本,而不是有瑕疵的样本。作为整个系统的一部分,而不是作为一个单独的软件工具,终端用户可以从深入学习中获益,而不必配置参数或干扰数据的收集和标记。

自主机器视觉系统包括几个相互补充的KI模块。这种人工智能涵盖了生产线上视觉质量保证的各个方面,包括传感器参数的自调整、传感器视场中物体检测技术的自适应和自微调。因此,系统可以独立调整,不需要专门设计。

由于Inspekto开发的算法,该系统可以在没有对象先验知识和操作者专家知识的情况下,区分构成误差的材料变化的视觉领域中的干扰变化。因此,对象的不同方向或更改的照明条件不会导致错误消息。

该图显示了由S70
检查系统检测到的一些异常。(图片:Inspekto)

此外,自动机器图像处理提供了灵活性,即系统可以很容易地从制造工厂的一个点移动到另一个点,并提供与以前相同的简单设置。由于这种灵活性,也可以在制造工厂的同一地点对多个产品进行可视化QS,系统正确地识别和分类每个产品。

Banner
Related Posts

工业相机调研凸显嵌入式趋势

2019年3月27日

2019年3月27日

据一项专业调查显示,机器视觉行业正凸显出向嵌入式视觉和模块化发展的趋势。制造商们看到了嵌入式视觉解决方案在汽车和基础设施应用方面的巨大潜能。

表面缺陷检测系统方案实施的七个步骤

2019年5月24日

2019年5月24日

表面缺陷检测系统主要以相机成像和图像处理技术为主,配置合适的相机和光源可以使被检测物体凸显表面缺陷或特征,使其检测系统能够实时、准确的对物体表面缺陷进行检测。

深度学习在产品缺陷检测中面临的考验

2019年12月13日

2019年12月13日

人工智能(AI)的发展促使数很多公司投资于深度学习软件,对于视觉行业来说是个好兆头,因为需要在技术上实现飞跃。但是,对于采购或投资相关产品的的用户而言,重要的是要了解如何正确地评估深度学习软件可用性 ,以及它们如何工作的。

新的视觉系统可以在传感器内计算,无需将信息转换成数字格式

2020年3月5日

2020年3月5日

研究人员开发了一种图像传感器阵列,它作为自己的人工神经网络,可以同时捕获和识别光学图像,无需将信息转换成数字格式即可快速处理信息。

工程点扩展函数(E-PSF)技术可以实现高精度3D成像

2019年7月10日

2019年7月10日

工程点扩散功能(E-PSF)技术以光学相位板的形式发展,将使制造商能够满足对超精密物体成像不断增长的需求。

新型智能玻璃为机器视觉研究提供新的模拟途径

2019年7月18日

2019年7月18日

[据光电子网站2019年7月10日报道] 美国威斯康星大学麦迪逊分校电气和计算机工程系Zongfu Yu教授带领的团队开发出了一种新型智能玻璃。不需传感器、不用接通线路或外部电源、亦不需连接互联网,这种智能玻璃就可以利用光学反射的原理识别图像。

自动化金属表面缺陷检测系统

2019年6月25日

2019年6月25日

近年来,生产制造企业对于金属的需求快速增长,对于产品质量的要求也是日益严格。如何对金属产品质量进行有效控制,我们的方法很简单:提供针对每种金属产品应用优化的表面缺陷检测解决方案,以高效一致方法的进行在线检查。事实证明,实时信息在为客户解决问题方面具有无可估量的价值,通过消除对生产后物理带材检验的依赖,制造商能够克服重大障碍。

研究人员开发了一种非侵入性果实成熟度检测方法

2019年6月25日

2019年6月25日

昆士兰的研究人员开发了一种新工具,可以在收获前评估芒果作物的成熟度,这可能会提高收获时间和果实质量。

红外、中国和3D堆叠:CMOS的发展趋势

2019年3月29日

2019年3月29日

3月13日在伦敦举行的Image Sensors欧洲会议的开幕式上,Analog Value的首席技术官兼创始人Vladimir Koifman在会议上上介绍了红外传感技术的进步、堆叠式传感器以及中国市场的价格趋势。

CCD成像在光源和色彩检测中的优势和应用

2019年7月25日

2019年7月25日

人类视觉感知是任何旨在被人类观看的照明或显示产品质量的最终标准。从平板电视到智能手机,灯泡到交通信号,VR球场的jumbotrons体育场,您的车内GPS到喷气式飞机的驾驶舱仪表,人类用户感知的以及他们注意到的任何缺陷都是决定性因素设备质量。人类对亮度和颜色的感知为操作和安全公差设定了基准。

嵌入式视觉:通过软硬件协作获得成功

2019年3月21日

2019年3月21日

在可预见的未来,嵌入式视觉技术不会完全取代传统的、基于PC或智能相机的机器视觉系统。然而,从技术和经济的角度来看,它确实在许多应用领域提供了非常有效的解决方案。

红外相机热成像在缺陷检查中的应用

2019年6月1日

2019年6月1日

制造商正在使用红外摄像机来辅助预防性维护,并发现与热相关的装配过程中的缺陷。

3D热成像技术

2019年10月30日

2019年10月30日

Fraunhofer IOF使用LWIR热像仪扩展了其高速3D相机系统。他们的数据被映射到使用黑白摄像机重建的3D点,从而获得1kHz空间热图像。

3D视觉检测的未来:光度立体技术

2019年6月12日

2019年6月12日

利用3D表面定向,特别是它对反射光的影响,工业应用的光度立体产生对比度图像,突出了局部3D表面变化。

机器视觉技术可能比您想象的更厉害

2018年8月9日

2018年8月9日

从数字图像中自动提取信息的能力为制造商努力削减成本、提高质量和简化整体流程提供了更多可能。机器视觉的主要用途是检查、测量和机器人引导。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注