2020年8月5日 机器视觉与计算机视觉技术

Teledyne DALSA的Linea HS 16k多场TDI相机

机器视觉技术公司 Teledyne DALSA ,近日推出其最新的电荷域CMOS TDI相机——Linea HS 16k多场TDI相机。多场成像允许最终用户捕获多个图像,例如一次扫描即可同时显示明场、暗场和背光图像。

Linea HS 16k多场TDI相机基于多阵列TDI传感器结构,可提供100 kHz x 3线速率或5 GPix/sec的数据吞吐量,适用于诸如平板显示器,PCB和晶圆检查,生命科学,航空成像等高性能成像应用和网络检查。

Linea HS 16k多场相机是业内首创,它使用具有最小光谱串扰的集成二向色滤光片,在一次扫描中分离和捕获多达三个场图像,如亮场、暗场和背光。与先进的照明技术相结合,多视野可显着缩短间歇时间并提高可检测性。

对于诸如OLED显示器自动光学检查(AOI)等要求苛刻的应用,最终用户当前需要在各种照明条件下进行多次扫描以检测缺陷。借助新的Linea HS Multifield相机,客户可以完成一次扫描需要进行三遍的操作。这大大提高了AOI系统的数据吞吐量,并提高了可检测性。

结合Teledyne的Xtium™2 CLHS系列高性能帧抓取器,可以实现数据吞吐量的突破。下一代CLHS光纤接口采用经过现场验证的技术,提供可靠、高通量的数据传输。光纤电缆降低了系统成本,提供更长的电缆长度(高达300米),不受电磁辐射的影响,是工业环境的理想选择。。Teledyne DALSA的Xtium2系列高性能帧抓取器采用PCI Express Gen 3 x8平台。

主要特点:

16k分辨率下高达100k-Hz x 3线速的高速或5 Gpix / sec

最小光谱串扰

极低的噪声和高灵敏度

主动像素辅助对齐

Camera Link HS光纤接口可实现高可靠性和长电缆数据传输

降低系统成本

Banner
Related Posts

基于相机和激光传感器的车顶视觉检测系统

2019年4月24日

2019年4月24日

像多单元高速列车这样的现代轨道车辆需要定期进行检查维护,以确保最车辆的安全稳定运行,增加使用寿命并最大限度地减少列车的磨损

自动化金属表面缺陷检测系统

2019年6月25日

2019年6月25日

近年来,生产制造企业对于金属的需求快速增长,对于产品质量的要求也是日益严格。如何对金属产品质量进行有效控制,我们的方法很简单:提供针对每种金属产品应用优化的表面缺陷检测解决方案,以高效一致方法的进行在线检查。事实证明,实时信息在为客户解决问题方面具有无可估量的价值,通过消除对生产后物理带材检验的依赖,制造商能够克服重大障碍。

工程点扩展函数(E-PSF)技术可以实现高精度3D成像

2019年7月10日

2019年7月10日

工程点扩散功能(E-PSF)技术以光学相位板的形式发展,将使制造商能够满足对超精密物体成像不断增长的需求。

基于线扫描相机的表面缺陷检测系统

2019年5月17日

2019年5月17日

表面缺陷检测系统也叫表面质量检测系统或者表面质量检测设备。应用的领域十分的广泛,我例举一下最主要的应用领域吧,钢铁冶金,有色金属加工,高精铜板带,铝板带,铝箔,不锈钢制造,电子材料,无纺布,织物,玻璃,纸张,薄膜。

改善机器视觉系统的十大方法

2018年8月9日

2018年8月9日

机器视觉是一个新兴领域,如果设置正确,可以减少过程效率低下。任何使用机器视觉作为机器人引导或检查的设施都应重视这一领域,以寻求可能的改进。

新的视觉系统可以在传感器内计算,无需将信息转换成数字格式

2020年3月5日

2020年3月5日

研究人员开发了一种图像传感器阵列,它作为自己的人工神经网络,可以同时捕获和识别光学图像,无需将信息转换成数字格式即可快速处理信息。

机器视觉系统集成发展的现状和前景

2019年7月10日

2019年7月10日

机器视觉系统集成是一门学科,随着新成像技术的不断发展,这门学科的发展势头依然强劲。

为双目立体视觉插上FPGA翅膀

2019年10月10日

2019年10月10日

FPGA具有灵活高效、可重复编程特性,可实现定制性能、高吞吐量和低延迟,是十分灵活且强大的计算加速器。所以,很多研究机构将算法进行简化后,使用FPGA进行处理。

深度学习+机器视觉=下一代检测

2019年9月18日

2019年9月18日

将机器视觉和深度学习结合起来,将为企业在运营和投资回报(ROI)方面提供强大的手段。因此,抓住传统机器视觉和深度学习之间的差异,并理解这些技术如何相互补充——而不是竞争或替代——对于实现投资最大化至关重要。

每个机器制造者都应该了解基于组件的3D视觉系统

2019年9月1日

2019年9月1日

在构建成本效益高的三维视觉系统时,是最好使用基于组件的方法(如照相机、激光、透镜、支架、校准目标)还是采用一体化(即智能)方法?乍一看,以较低的成本购买单个组件和构建定制的视觉解决方案似乎是更经济的途径。

细数机器视觉的9大应用场景

2019年7月23日

2019年7月23日

本文主要介绍了机器视觉的主要应用场景,目前绝大部分数字信息都是以图片或视频的形式存在的,若要对这些信息进行有效分析利用,则要依赖于机器视觉技术的发展,虽然目前已有的技术已经能够解决很多问题,但离解决所有问题还很遥远,因此机器视觉的应用前景还是非常广阔的。

机器视觉技术在农业应用研究进展

2019年3月31日

2019年3月31日

随着计算机软硬件、图像采集处理装置、图像处理技术的迅猛发展,机器视觉技术在农业的应用领域不断扩展。目前,美国、日本、德国等发达国家已经开始将机器视觉系统应用到农业生产的各个阶段,以解决人口老龄化加剧、劳动力缺失等问题引起的挑战。

在图像处理中应用深度学习技术

2019年3月28日

2019年3月28日

深度学习应用凭借其在识别应用中超高的预测准确率,在图像处理领域获得了极大关注,这势必将提升现有图像处理系统的性能并开创新的应用领域。

表面缺陷检测系统方案实施的七个步骤

2019年5月24日

2019年5月24日

表面缺陷检测系统主要以相机成像和图像处理技术为主,配置合适的相机和光源可以使被检测物体凸显表面缺陷或特征,使其检测系统能够实时、准确的对物体表面缺陷进行检测。

如何利用开源软件开发机器人视觉系统?

2019年6月28日

2019年6月28日

机器人视觉应用程序可以带来一系列复杂的需求,但开源库可以为几乎所有需求提供解决方案。开发人员可以找到从基本的图像处理和对象识别再到运动规划和避免碰撞的开源软件包 。另外,还有有一些关键的开源图像处理软件包,可以帮助开发人员实现复杂的机器人系统。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注