2020年8月5日 机器视觉与计算机视觉技术

用机器视觉法监测石榴成熟过程

瓦伦西亚农业调查研究所(IVIA)、米格尔·埃尔南德斯·德埃尔切大学和巴伦西亚理工大学的科学家们研究了两种用于石榴质量监测的机器视觉技术。

科学家们在七个不同的收获时间采集了石榴果Mollar de Elche。在每次收获时都要获得完整果实和果实的色彩和高光谱图像。测定了果实的总可溶性固形物、可滴定的酸度、成熟度指数、BrimA、内部色泽、总酚类化合物含量、抗氧化活性等理化性质。使用偏最小二乘回归模型研究了从完整水果和假种皮的图像获得的颜色(L *,a *,b *)和光谱数据(720-1050 nm)之间的关系,以了解其理化性质。还使用偏最小二乘判别分析模型进行了不同成熟阶段的判别。

利用完整果实的颜色和高光谱图像预测其理化性质也得到了类似的结果。然而,使用高光谱成像技术对arils信息的预测更高。在成熟阶段的判别中,最高的准确度是通过使用高光谱成像获得的,其中95%的完整水果和100%的假种皮经过正确分类-科学家们解释-这些结果表明,机器视觉技术(尤其是高光谱成像)对于监测完整Mollar de Elche石榴的水果和假种皮质量具有巨大潜力。

Banner
Related Posts

机器视觉中的彩色成像以及要考虑的因素

2019年5月22日

2019年5月22日

特定机器视觉彩色摄像机是否适合您的应用取决于多种因素。在为您的应用开发最合适的彩色机器视觉系统时,需要考虑所有这些因素。下面是开发彩色机器视觉系统时需要考虑的一些相机问题:

自主机器视觉系统Inspekto S70

2019年12月18日

2019年12月18日

自主机器视觉(AMV)是通过机器学习的技术,让视觉系统拥有自动识别对象的能力,它为质量保证提供了革命性的方法,同时将使巨额投资和长时间停机成为过去。

机器视觉技术发展的五大趋势

2019年6月21日

2019年6月21日

在过去的一年里,人工智能(AI)、大数据、3D成像和机器人过程自动化等领域在取得了空前的发展。在即将到来的2019年,机器视觉技术应用还将蓬勃发展,新机器视觉认为五大发展趋势将引领行业应用。

快速创建三维纳米结构图像的新方法

2019年4月17日

2019年4月17日

通过X射线激光脉冲从两个方向照射物体(在图像中心切出十字)。在下一步骤中,将星形衍射图像重建为3-D对象

机器视觉应用的柔性开发

2019年9月12日

2019年9月12日

本文使用IBV软件MERLIC的例子,概述了图像处理的当前要求,并展示了如何在不编程的情况下创建应用程序。

工业相机调研凸显嵌入式趋势

2019年3月27日

2019年3月27日

据一项专业调查显示,机器视觉行业正凸显出向嵌入式视觉和模块化发展的趋势。制造商们看到了嵌入式视觉解决方案在汽车和基础设施应用方面的巨大潜能。

深度学习在机器视觉中的应用与发展

2019年5月7日

2019年5月7日

在短短几年内,深度学习软件已经比任何传统算法可以更好地对图像进行分类处理,而且可能很快就可以超越人工检查。

在图像处理中应用深度学习技术

2019年3月28日

2019年3月28日

深度学习应用凭借其在识别应用中超高的预测准确率,在图像处理领域获得了极大关注,这势必将提升现有图像处理系统的性能并开创新的应用领域。

工业机器视觉应用有必要使用边缘计算吗?

2019年12月17日

2019年12月17日

伴随着机器视觉技术的快速发展,在提高制造商产品质量水平的同时加快生产效率,可以说拥有巨大的潜力。这项技术的影响范围也在不断地扩大,各种新的应用注定会在我们的日常生活中发挥更大的作用。

为双目立体视觉插上FPGA翅膀

2019年10月10日

2019年10月10日

FPGA具有灵活高效、可重复编程特性,可实现定制性能、高吞吐量和低延迟,是十分灵活且强大的计算加速器。所以,很多研究机构将算法进行简化后,使用FPGA进行处理。

Teledyne DALSA的Linea HS 16k多场TDI相机

2019年11月28日

2019年11月28日

机器视觉技术公司 Teledyne DALSA ,近日推出其最新的电荷域CMOS TDI相机——Linea HS 16k多场TDI相机。多场成像允许最终用户捕获多个图像,例如一次扫描即可同时显示明场、暗场和背光图像。

工业机器人及机器人视觉系统详解

2019年3月26日

2019年3月26日

人类想要实现一系列的基本活动,如生活、工作、学习就必须依靠自身的器官,除脑以外,最重要的就是我们的眼睛了,(工业)机器人也不例外,要完成正常的生产任务,没有一套完善的,先进的视觉系统是很难想象的。

每个机器制造者都应该了解基于组件的3D视觉系统

2019年9月1日

2019年9月1日

在构建成本效益高的三维视觉系统时,是最好使用基于组件的方法(如照相机、激光、透镜、支架、校准目标)还是采用一体化(即智能)方法?乍一看,以较低的成本购买单个组件和构建定制的视觉解决方案似乎是更经济的途径。

嵌入式视觉:通过软硬件协作获得成功

2019年3月21日

2019年3月21日

在可预见的未来,嵌入式视觉技术不会完全取代传统的、基于PC或智能相机的机器视觉系统。然而,从技术和经济的角度来看,它确实在许多应用领域提供了非常有效的解决方案。

如何利用机器人视觉进行拣货作业

2019年4月27日

2019年4月27日

机器人进行拣货作业定义了不同的过程,在这些过程中机器人用于从箱子中拾取和放置货物。 Bin pick是机器人领域中棘手的机器人任务。但是,您不必使用复杂的解决方案来解决它。使用机器人视觉的拣选可以以简单的方式执行。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注