2021年1月19日 机器视觉与计算机视觉技术

最全分类!计算机视觉的图像标注类型及应用

计算机视觉的图像标注种类繁多,应用也不尽相同。

想知道各种标注技术的效果吗?一起来看看它们在计算机视觉方面的应用和独特的案例吧!

图像标注类型

在深入学习计算机视觉的图像标注用例前,首先要了解各类图像标注的方法。一起来剖析一下最常见的图像标注技术吧。

  1. 边界框(Bounding Boxes)

边界框用途广泛且简单明了,是计算机视觉中最常用的图像标注类型之一。边界框圈出目标,并协助计算机视觉网络找出感兴趣的目标。它很好创建,只需要指定盒的左上角和右下角的X和Y坐标。

边界框几乎可以应用于任何目标,而且能大幅提升目标检测系统的准确度。

  1. 多边形分割(Polygonal Segmentation)

多边形分割是另一种图像标注技术,也是边界框背后理论的扩展。它帮助计算机视觉系统寻找目标,而复杂的多边形比单纯的框更能精确地检测出目标的位置和边界。

和边界框相比,多边形分割可以切掉目标边缘的噪声/无用像素,避免迷惑分类器。

  1. 线标注(Line Annotation)

线标注创建直线和曲线,主要用于描绘图像的各个部分。当需要标注并划分界限的部分太小或者太薄,边界框等方法无法描绘时,便可使用线标注。

直线和曲线很容易用来标注,常用于训练仓库机器人识别传送带上各部件的差异,或训练自动驾驶车辆识别车道。

  1. 特征点标注(Landmark Annotation)

计算机视觉系统的第四种图像标注是特征点标注。因为它在图片上创建点,所以有时也被称为点标注。仅仅几个小点就能为图片中细小纷繁的目标归类。但特征点标注常常使用许多点来描绘目标的轮廓或框架。

特征点大小多样,大些的点有时会用来在区域中区分出重要/标志区域。

  1. 三维长方体(3D Cuboids)

三维长方体是一种非常强大的图像标注,和边界框很像,都能帮助分类器找到目标。然而,三维长方体有长宽高三维成像。

锚点一般位于目标边缘,各点之间用线填充。目标以三维效果呈现,让计算机视觉系统在三维空间中学会区分体积和位置等特征。

  1. 语义分割(Semantic Segmentation)

语义分割是一种将图像分割成不同区域的图像标注方法,它能将图像中的每个像素归类。

图片中语义/定义不同的区域彼此分割。比如,图片中一部分可能是“天空”,而另一部分可能是“草地”。语义分割的关键是,各区域由语义信息所定义,而图片分类器则为属于该区域的每个像素归类。

图像标注类型用例

  1. 边界框标注

边界框在计算机视觉图像标注中用于帮助网络定位目标,协助创建定位并分类目标的模型。常见用途包括检查目标彼此冲突时的情况。

边界框和目标检测显然应用于自动驾驶系统中,定位道路中的车辆。另外还能用在建筑工地上为目标归类,分析工地安全,让机器识别出不同环境中的目标。

边界框用例:

利用无人机拍摄镜头监控建筑对象,由地基铺设起一直监控到建筑完工准备入住。

识别杂货店的食品及其他物品,自动监测结账流程。

检测车辆外部受损情况,以便在保险索赔时进行详细分析。

  1. 多边形分割

多边形分割用众多复杂多边形标注目标,能够捕捉不规则形状的目标。在需要保证精确度时,多边形分割比包围盒更有效。因为多边形能勾勒物品轮廓,消除边界框中的噪声,提升模型的精确度。

多边形分割在自动驾驶中非常有用,能够突出标志和路标等不规则物体,还能比包围盒更精确地定位车辆。它还能用来精确标注众多不规则目标,如卫星和无人机所检测的对象。如需精确探测水生物,多边形分割也比边界框更好。

计算机视觉中的多边形分割经典用例:

标注城市景观中的不规则物体,如车辆、树木和水池。

多边形分割还能使目标检测更加简单。比如多边形标注工具Polygon-RNN和传统的不规则形状标注方法语义分割相比,在速度和精度上都有显著提高。

  1. 线标注

线标注本身关注图像中的线条,所以最好用在外观重要特征为线型的目标中。

线标注常在自动驾驶中用来描绘车道。同样,线标注还能指导工业机器人放置对象,将目标区域指定为两线之间。边界框理论上讲也能用于这些目的,但线标注更加清晰,更能避免使用边界框时产生的噪声。

计算机视觉中的线标注经典用例,如自动检测每行作物,甚至还能跟踪昆虫的腿部位置。

  1. 特征点标注

特征点/点标注用点表示目标,所以最主要的用法是检测并量化小型目标。比如,城市鸟瞰图需要用特征点检测来找到车辆、房屋、树木、水池等感兴趣的目标。

也就是说,特征点标注也有其他用法。将重点特征点结合起来便能创建目标轮廓,就像是连点拼图的游戏。这些点形成的轮廓能用来识别面部特征,或者分析人的动作或姿势。

计算机视觉的特征点标注常见用例:

面部识别,追踪多个特征点能轻松识别出面部表情和其他面部特征。

特征点标注还能用在生物学领域进行几何形态测量。

  1. 三维长方体

当计算机视觉系统不止需要识别目标,还需要预测目标的大体形状和体积时,便需要三维长方体标注。该方法常用来为计算机视觉系统开发能够运动的自动系统,从而预测目标在其周围环境中的状况。

三维长方体标注在计算机视觉中的用例有,开发自动驾驶车辆和移动机器人的计算机视觉系统。

  1. 语义分割

其实,语义分割大体上也是一种分类形式,只不过它是对区域中的每个像素进行分类,而不是对目标进行分类。想通了这点,语义分割就能轻松用于任何需要分类/识别的大型分散区域。

语义分割可用于自动驾驶中,车辆的人工智能须分辨出道路、草地和人行道的各个区域。

除了自动驾驶,计算机视觉的语义分割还能用于:

分析农田,检测杂草和特定的作物类型。

在诊断中识别医学图像,检测细胞,分析血流。

检测森林和雨林的毁坏和生态系统破坏,促进生态保护。

结语

只要选择正确的方法,计算机视觉便能实现所有的目标。在了解图像标注的众多种类和用例后,最好进行试验,付诸实践,从而掌握实际应用中的最佳方法。

Banner
Related Posts

计算机视觉以及它在商业中是如何应用的?

2019年9月17日

2019年9月17日

事实证明,大多数人认为理所当然的东西,即能够看到、处理并对视觉输入采取行动的能力,在机器中是非常难以复制的。这正是计算机视觉(cv)的目标。虽然计算机视觉可能不如人类视觉先进,但它今天已经发展到在商业中非常重要的地步。

计算机视觉和图像处理之间有什么区别?

2018年8月9日

2018年8月9日

图像处理是计算机视觉的一个子集。计算机视觉系统利用图像处理算法对人体视觉进行仿真。例如,如果目标是增强图像以便以后使用,那么这可以称为图像处理。如果目标是识别物体、汽车自动驾驶,那么它可以被称为计算机视觉。

hotonic Vision通过视频开发激光雷达传感器

2019年5月8日

2019年5月8日

英国初创公司Photonic Vision开发了一种激光雷达飞行时间传感的颠覆性方法。

富士通发布了新的AI计算机视觉软件以简化行为识别培训

2019年12月5日

2019年12月5日

富士通开发了一种基于人工智能的新方法,可以对视频片段进行行为分析,据该公司公告称,它可以识别出一系列细微而复杂的人类活动,而无需大量的培训数据。

英特尔深度学习工具包OpenVINO

2019年3月5日

2019年3月5日

OpenVINO包括英特尔的深度学习部署工具包,其中包括一个模型优化器,可以从许多框架(Caffe,Tensoflow,MxNet,ONNX,Kaiai)导入和训练模型。

机器学习和模式识别之间有什么区别?

2019年10月12日

2019年10月12日

模式识别是机器学习的工程应用。机器学习处理可以从数据中学习的系统的构建和研究,而不是仅遵循明确编程的指令,而模式识别是对数据中模式和规律性的识别。

为什么数据科学在高级图像识别中很重要?

2020年1月17日

2020年1月17日

由于视觉和语音是两个至关重要的人类交互元素,数据科学能够利用计算机视觉和语音识别技术来模拟这些人类任务。即使它已经开始模仿和杠杆在不同的领域,特别是在电子商务部门。机器学习的进步和高带宽数据服务的使用增强了图像识别的应用。

利用机器学习消灭撒哈拉以南非洲采采蝇

2018年8月9日

2018年8月9日

“我们将使用数据科学来创建一个基于机器学习的自动化系统,它可以从采采蛹中快速确定是雄性还是雌性,”Zsuzza Marka说。这一系统将成为机器人分拣机的基础,我们希望该机器最终将用于撒哈拉以南非洲地区,以减轻采采蝇的危害。”

自动机器视觉初创企业Nexar发布实时互动地图产品

2019年7月19日

2019年7月19日

导引 :该公司在声明中表示,通过将用户提供的更新数据与汽车摄像头和传感器的Nexar数据相连接,该公司的地图可以实时警告驾驶员道路的危险,施工区域和道路标志的丢失等

CMU的研究人员设计出利用计算机视觉来观察周围角落的新技术

2019年6月20日

2019年6月20日

未来的自动驾驶汽车和其他机器智能系统可能不需要视线来收集极其详细的图像数据:卡内基梅隆大学(Carnegie Mellon University)、多伦多大学(University of Toronto)和伦敦大学学院(University College London)的一项新研究设计出了一种“观察周围角落”的技术。

英伟达Jetson Nano定位于大众市场机器学习

2019年3月20日

2019年3月20日

GPU巨头英伟达(Nvidia)发布了用于大众市场产品的微型人工智能电脑Jetson Nano。

掌握计算机视觉开发技能的8个步骤

2019年8月5日

2019年8月5日

在与几位致力于人工智能和计算机视觉项目的开发人员交谈之后,我提出了八个步骤,成为一名出色的计算机视觉开发人员。但是,在深入研究每个步骤之前,让我们看一下计算机视觉技术最适合的案例:

基于田间高光谱图像和机器学习估计芒果成熟度的光谱滤波器设计

2019年8月15日

2019年8月15日

本文旨在通过模拟几个具有不同真实光学滤波器的成像设备,开发一种新型滤波器选择方法,并利用高成本成像高光谱设备为特定应用设计一种成本较低的多光谱解决方案。

推动计算机视觉和视觉AI发展的四大关键趋势

2019年5月14日

2019年5月14日

本文讨论了推动视觉应用快速发展和影响行业未来的关键趋势,解释了这些趋势背后的推动因素,并强调了对技术供应商、解决方案开发者和最终用户的关键影响。

从摄像机到云端:计算机视觉如何将数据转化为行动

2020年1月8日

2020年1月8日

商业上的成功通常归结为根据突然的市场变化做出快速决策。计算机视觉(一种在AI领域中崛起的快速技术),可以帮助商用机构和其他企业才做到这一点。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注