2020年7月12日 机器视觉与计算机视觉技术

利用计算机视觉和机器学习技术实现莴苣种植的精准化作业

Earlham Institute的研究人员开发了一个机器学习平台,使用计算机视觉和航拍图像对莴苣作物进行分类。

该研究称,该平台名为AirSurf-Lettuce,能够以高于98%的精度对冰山莴苣进行评分。

研究人员在位于伊利的英国第二大蔬菜种植者G’s Growers进行了田间试验。

作物研究人员,种植者和农民使用航拍图像在生长季节监测作物。

为了从田间采集的大规模航空影像中提取有意义的信息,需要高通量的表型分析解决方案,这不仅可以产生关键作物性状的高质量指标,还可以帮助农民做出迅速可靠的作物管理决策。

该软件包括测量数量,大小和精确定位,以帮助农民精确收获,并以最有效的方式将作物推向市场。重要的是,这项技术可以应用于其他作物,扩大整个食物链的积极影响范围。

生菜是一种需求量非常大的蔬菜,特别是在东安格利亚,每年在英国生产122,000吨。由于种植过程效率低下以及收获策略,高达30%的产量可能会损失,如果能够实现,可以带来显着的经济增长。

非常重要的是,农民和种植者必须准确了解作物何时可以收获成果,以便他们能够启动物流规划,交易和销售其产品。

然而,传统上,在田间测量作物非常耗时且劳动强度大,而且容易出错;因此,基于航拍图像的新型AI解决方案可以提供更加强大和有效的方法。

种植效率的另一个障碍是,近年来一直在增加的恶劣天气条件可以非常显着地减少收获时间,因为作物需要不同的成熟时间。

AirSurf技术 – 由Earlham Institute的周氏集团成员开发,包括该项目论文的第一作者,Alan Bauer和Aaron Bostrom–使用深度学习和超大规模成像分析来测量高浓度的卷心莴苣 – 吞吐量模式。这能够识别莴苣植物的精确数量和位置,并具有识别作物品质的额外优势。

将该系统与GPS相结合,农民可以追踪田间莴苣的大小分布,这只会有助于提高农业实践的准确性和有效性,包括收获时间。

第一作者,EI的Alan Bauer说:“这种跨学科的合作将计算机视觉和机器学习与莴苣种植业务相结合,以展示我们如何利用机器学习提高作物产量。”

G’s Growers的行业合作伙伴,创新经理Jacob Kirwan补充说:“大规模种植意味着在确保我们以环保和经济可持续的方式生产作物时,精确度至关重要。使用像AirSurf这样的技术意味着种植者能够以更高水平的细节了解其田地和作物的变异性。

然后可以从这些信息中做出决定,例如不同的投入和灌溉应用;改变收获策略和规划出售作物的最佳时间,都将有助于提高农业产量和提高农业生产力。

Banner
Related Posts

计算机视觉软件市场的最新趋势

2018年8月9日

2018年8月9日

计算机视觉软件正在改变各个行业,不仅使消费者的生活更容易,而且让人产生兴趣。作为一个领域,计算机视觉已经获得了大量的宣传和投资。北美计算机视觉软件市场总投资额为1.2亿美元,而中国市场则飙升至39亿美元。

图像识别没你想的那么难!看完这篇你也能成专家

2019年6月2日

2019年6月2日

本地生活场景中包含大量极富挑战的计算机视觉任务,如菜单识别,招牌识别,菜品识别,商品识别,行人检测与室内视觉导航等。

从摄像机到云端:计算机视觉如何将数据转化为行动

2020年1月8日

2020年1月8日

商业上的成功通常归结为根据突然的市场变化做出快速决策。计算机视觉(一种在AI领域中崛起的快速技术),可以帮助商用机构和其他企业才做到这一点。

富士通发布了新的AI计算机视觉软件以简化行为识别培训

2019年12月5日

2019年12月5日

富士通开发了一种基于人工智能的新方法,可以对视频片段进行行为分析,据该公司公告称,它可以识别出一系列细微而复杂的人类活动,而无需大量的培训数据。

英伟达Jetson Nano定位于大众市场机器学习

2019年3月20日

2019年3月20日

GPU巨头英伟达(Nvidia)发布了用于大众市场产品的微型人工智能电脑Jetson Nano。

深度学习“瓶颈”已至,计算机视觉如何突破困局?

2018年8月9日

2018年8月9日

从人工智能的发展过程看,深度学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。Alan Yuille认为,现在做AI不提神经网络,成果都很难发表了,这不是一个好势头。

hotonic Vision通过视频开发激光雷达传感器

2019年5月8日

2019年5月8日

英国初创公司Photonic Vision开发了一种激光雷达飞行时间传感的颠覆性方法。

计算机视觉的最佳图像注释平台

2019年5月10日

2019年5月10日

我们一直在寻找最佳的图像注释平台,该平台提供多种功能、项目管理工具和注释过程的优化(当您需要注释50k图像时,每个图像减少1秒钟!)。

利用机器学习消灭撒哈拉以南非洲采采蝇

2018年8月9日

2018年8月9日

“我们将使用数据科学来创建一个基于机器学习的自动化系统,它可以从采采蛹中快速确定是雄性还是雌性,”Zsuzza Marka说。这一系统将成为机器人分拣机的基础,我们希望该机器最终将用于撒哈拉以南非洲地区,以减轻采采蝇的危害。”

最全分类!计算机视觉的图像标注类型及应用

2019年10月9日

2019年10月9日

计算机视觉的图像标注种类繁多,应用也不尽相同。想知道各种标注技术的效果吗?一起来看看它们在计算机视觉方面的应用和独特的案例吧!

计算机视觉的未来

2018年8月9日

2018年8月9日

计算机视觉通过缩短开发时间并创建与用户想要和需要的内容相匹配的最终产品,为用户提供直接的好处。而不是在一小群开发人员和C级管理人员的闭门造车中确定功能,是基于自然使用而不断发展。

神经科学与计算机视觉合作可以更好的理解视觉信息处理

2019年5月8日

2019年5月8日

神经科学家和计算机视觉科学家表示,一个空前庞大的新数据集将帮助研究人员更好地理解大脑是如何处理图像的。

计算机视觉技术的七个典型应用

2019年4月8日

2019年4月8日

计算机视觉在现实世界中已经有了大量的应用,而且这项技术还很年轻。随着人类和机器继续合作,人类的劳动力将被解放出来,专注于更高价值的任务,机器的自动处理依赖于图像识别的过程。

新的过滤器增强了机器人对6D姿态评估的视觉感知能力

2019年8月7日

2019年8月7日

研究人员最近进行了一项关于6D物体姿态估计的研究,目的是开发一种过滤器,使机器人具有更强的空间感知能力,从而能够更准确地操纵物体和在空间中导航。

计算机视觉的优点和局限性

2019年9月10日

2019年9月10日

计算机视觉是计算机科学的一个分支,它允许机器系统实时地查看、处理和解释视觉信息。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注