2020年8月4日 机器视觉与计算机视觉技术

计算机视觉和图像处理之间有什么区别?

人的眼睛有600万到700万个锥体细胞,其中包含三种被称为视蛋白的对颜色敏感的蛋白质之一。当光子击中这些视蛋白时,它们会改变形状,引发级联反应,产生电信号,进而将信息传递给大脑进行解读。

整个过程是一个非常复杂的现象,并且使机器在人类层面上解释这一点一直是一个挑战。现代机器视觉系统背后的的核心动机在于模拟人类视觉,用于识别图案,面部以及将将2D图像转化为3D模型等。

在概念层面,图像处理和计算机视觉之间存在很多重叠,并且经常被误解的术语可以互换使用。在这里,我们简要概述了这些技术,并解释了它们在基础层面上的不同之处。

图像处理

数字图像处理技术于20世纪60年代末在美国国家航空航天局喷气推进实验室(Jet Propulsion Laboratory)首创,通过计算机增强,将Ranger航天器的模拟信号转换为数字图像。现在,数字成像有着广泛的应用,尤其是在医学上。众所周知的应用包括计算机辅助断层扫描(CAT)和超声波。

图像处理主要与数学函数和图像变换的使用和应用有关,而不考虑对图像本身进行任何智能推理。它仅仅意味着算法对图像进行一些转换,如平滑、锐化、对比度、拉伸。

对于计算机来说,图像是一个二维信号,由像素的行和列组成。一种形式的输入有时可以转换成另一种形式。例如,磁共振成像(MRI),记录下离子的激发并将其转换成视觉图像。

这里有一个用Python平滑图像的例子:

对于一维信号,图像还可以使用各种低通滤波器(LPF)、高通滤波器(HPF)等进行滤波。HPF滤波器有助于在图像中找到边缘。

这种使用矩阵的变换在卷积神经网络等机器学习算法中非常普遍。在图像(像素值的另一个矩阵)上卷积滤波器,用于检测边缘或颜色强度。

在数字图像处理中使用的一些技术包括:

隐马尔可夫模型

图像编辑与恢复

线性滤波和双边滤波

神经网络

计算机视觉

计算机视觉来自使用机器学习技术建模图像处理。计算机视觉应用机器学习来识别用于解释图像的模式。就像人类视觉的视觉推理过程一样;我们可以区分对象,对它们进行分类,根据它们的大小对它们进行排序等等。计算机视觉,如图像处理,将图像作为输入,并以大小,颜色强度等信息的形式提供输出。

特斯拉的无人驾驶系统通过Source检测有雾情景中的物体

以下是标准机器视觉系统的组件:

相机

照明设备

镜头

抓帧器

图像处理软件

用于模式识别的机器学习算法

显示屏或机械臂执行从图像解释中获得的指令。

例如,安装在无人驾驶汽车上的摄像机必须检测到前面的人,并将他们与车辆和其他特征区分开来。或者,我们可以测量网球运动员在比赛中所走的距离。

球员运动的热图

因此,时间信息在计算机视觉中起着重要作用,就像我们自己理解世界的方式一样。

这里的最终目标是使用计算机来模拟人类视觉,包括学习和能够根据视觉输入进行推理和采取行动。

结论

图像处理是计算机视觉的一个子集。计算机视觉系统利用图像处理算法对人体视觉进行仿真。例如,如果目标是增强图像以便以后使用,那么这可以称为图像处理。如果目标是识别物体、汽车自动驾驶,那么它可以被称为计算机视觉。

Banner
Related Posts

推动计算机视觉和视觉AI发展的四大关键趋势

2019年5月14日

2019年5月14日

本文讨论了推动视觉应用快速发展和影响行业未来的关键趋势,解释了这些趋势背后的推动因素,并强调了对技术供应商、解决方案开发者和最终用户的关键影响。

神经科学与计算机视觉合作可以更好的理解视觉信息处理

2019年5月8日

2019年5月8日

神经科学家和计算机视觉科学家表示,一个空前庞大的新数据集将帮助研究人员更好地理解大脑是如何处理图像的。

富士通发布了新的AI计算机视觉软件以简化行为识别培训

2019年12月5日

2019年12月5日

富士通开发了一种基于人工智能的新方法,可以对视频片段进行行为分析,据该公司公告称,它可以识别出一系列细微而复杂的人类活动,而无需大量的培训数据。

计算机视觉的优点和局限性

2019年9月10日

2019年9月10日

计算机视觉是计算机科学的一个分支,它允许机器系统实时地查看、处理和解释视觉信息。

深度学习“瓶颈”已至,计算机视觉如何突破困局?

2018年8月9日

2018年8月9日

从人工智能的发展过程看,深度学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。Alan Yuille认为,现在做AI不提神经网络,成果都很难发表了,这不是一个好势头。

图像处理中的深度学习技术

2018年8月9日

2018年8月9日

机器学习中的另一种技术是例如“超级矢量机”。与深度学习相比,必须手动定义和验证功能。在深度学习中,神经网络采用这一手动步骤:在训练过程中,独立地自动识别和提取特征。

从摄像机到云端:计算机视觉如何将数据转化为行动

2020年1月8日

2020年1月8日

商业上的成功通常归结为根据突然的市场变化做出快速决策。计算机视觉(一种在AI领域中崛起的快速技术),可以帮助商用机构和其他企业才做到这一点。

视觉系统在零售业4.0中的作用

2020年1月6日

2020年1月6日

技术在零售购物中扮演着越来越重要的角色,这一发展被称为零售4.0。我们来看看计算机视觉是如何推动这场革命的。

英伟达Jetson Nano定位于大众市场机器学习

2019年3月20日

2019年3月20日

GPU巨头英伟达(Nvidia)发布了用于大众市场产品的微型人工智能电脑Jetson Nano。

计算机视觉软件市场的最新趋势

2018年8月9日

2018年8月9日

计算机视觉软件正在改变各个行业,不仅使消费者的生活更容易,而且让人产生兴趣。作为一个领域,计算机视觉已经获得了大量的宣传和投资。北美计算机视觉软件市场总投资额为1.2亿美元,而中国市场则飙升至39亿美元。

掌握计算机视觉开发技能的8个步骤

2019年8月5日

2019年8月5日

在与几位致力于人工智能和计算机视觉项目的开发人员交谈之后,我提出了八个步骤,成为一名出色的计算机视觉开发人员。但是,在深入研究每个步骤之前,让我们看一下计算机视觉技术最适合的案例:

最全分类!计算机视觉的图像标注类型及应用

2019年10月9日

2019年10月9日

计算机视觉的图像标注种类繁多,应用也不尽相同。想知道各种标注技术的效果吗?一起来看看它们在计算机视觉方面的应用和独特的案例吧!

为什么计算机视觉项目中选择OpenCV而不是MATLAB

2019年12月25日

2019年12月25日

在目前可用于计算机视觉的许多工具和库中,有两种主要的工具OpenCV和Matlab在速度和效率方面表现突出。在本文中,我们将详细介绍这两种方法。

新的过滤器增强了机器人对6D姿态评估的视觉感知能力

2019年8月7日

2019年8月7日

研究人员最近进行了一项关于6D物体姿态估计的研究,目的是开发一种过滤器,使机器人具有更强的空间感知能力,从而能够更准确地操纵物体和在空间中导航。

恶意的机器学习如何破坏人工智能

2019年3月26日

2019年3月26日

人工智能安全专家Dawn Song警告称,“对抗性机器学习”可用于逆向工程系统 - 包括用于防御的系统。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注