2020年7月2日 机器视觉与计算机视觉技术

深度学习“瓶颈”已至,计算机视觉如何突破困局?

近期,计算机视觉奠基者之一,霍金的弟子,约翰霍普金斯大学教授Alan Yuille提出“深度学习在计算机视觉领域的瓶颈已至。”

从人工智能的发展过程看,深度学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。Alan Yuille认为,现在做AI不提神经网络,成果都很难发表了,这不是一个好势头。如果人们只追求神经网络的潮流,抛弃所有老方法,也不去想如何应对深度网络的局限性,那么这个领域可能很难有更好的发展。

深度学习确实是一个让人向往的技术,这无可辩驳。其实,神经网络这个概念自上个世纪60年代就已经出现了,只是因为最近在大数据、计算机性能上面出现的飞跃,使得它真正变得有用起来,由此也衍生出来一门叫做“深度学习”的专业,当前国内涉及计算机视觉领域中,越来越多的人工智能公司或者研究机构投身到“深度学习”的浪潮中了,国内诞生了如旷视科技、商汤科技、极链科技Video++、依图科技等优秀的初创AI企业。旨在将复杂的神经网络架构应用在数据建模上,最终带来前所未有的准确性。

现在的技术开发成果也确实让人印象深刻。计算机现在可以辨识图片和视频里的东西都是什么,可以将语音转化成为文字,其效率已经超过了人力范畴。Google也将GoogleTranslate服务中添加了神经网络,现在的机器学习在翻译水平上已经逐步逼近人工翻译。现实中的一些应用也让人大开眼界,就比如说计算机可以预测农田作物产量,其准确性比美国农业部还高。机器还能更加精准的诊断癌症,其准确度也比从医多年的老医师还要高。

美国国防部高级研究计划局的一名负责人John Lauchbury形容如今人工智能领域内存在着三股浪潮:

第一股浪潮:知识库,或是类似于IBM所开发的“深蓝”和Waston专家系统。

第二股浪潮:数据学习,包括了机器学习和深度学习。

第三股浪潮:情境适应,其中涉及通过利用少量数据,在现实生活中构建出一个可靠的,解释型的模型。

从这三股浪潮中,可以发现目前深度学习算法的研究工作进展不错。

但深度学习的成果是建立在极其苛刻的前提条件之上。

不管是“监督学习”,亦或者是“强化学习”,它们都需要大量的数据进行支撑,而且在提前计划上面表现的非常差,只能做某些最简单直接的模式辨认工作。

相比之下,人就能够从极少数的例子上学到有价值的信息,并且善于在时间跨度很长的计划,在针对某个情境上有能力自己建造一个抽象模型,并利用这样的模型来做站在最高处的归纳总结。

以自动驾驶汽车为例,如果你是采用的“监督学习路径”,那么你需要从汽车驾驶的情境中提取海量的数据,而且还要以明确标示出来的“动作标签”进行分类挑拣,比如“停止”“行驶”等。再接下来,你还需要训练一个神经网络,使得它能够从眼下的情景和所与之相对应的行动之间构建因果联系。

如果你是采用的“强化学习路径”,那么你应该给算法一个目标,让它能够独立地判断当下最优解是什么,电脑在不同的情境之下,为了实现避免撞车的这个动作,它估计要宕机上几千次。虽然现在已经有了比较大的进展,一些神经网络可以从数据层面,在相当大的样本数量上给出一个惊人的成果,但是它们如果单独拿出一个出来,还是不可靠的,所犯的错误也是人一辈子都不可能犯的。

数据质量的不稳定性带来的是不可靠、不准确,以及不公平。同样,输出的结果,还得取决于输入的数据质量如何。神经网络中如果输入的数据是不准确的,不完整的,那么结果也会错的离谱,有些时候会造成巨大的损失。不要小看这样的风险,错误的输出可能会造成极大的危害,以GAN为例,有一些不轨之徒可以以一种人类肉眼无法识别的方式篡改图片,让机器错误的辨识图片。篡改的图片和最初的图片在我们看来可能是一致的,但是无人驾驶汽车中,汽车就会受到威胁。

Banner
Related Posts

掌握计算机视觉开发技能的8个步骤

2019年8月5日

2019年8月5日

在与几位致力于人工智能和计算机视觉项目的开发人员交谈之后,我提出了八个步骤,成为一名出色的计算机视觉开发人员。但是,在深入研究每个步骤之前,让我们看一下计算机视觉技术最适合的案例:

英特尔深度学习工具包OpenVINO

2019年3月5日

2019年3月5日

OpenVINO包括英特尔的深度学习部署工具包,其中包括一个模型优化器,可以从许多框架(Caffe,Tensoflow,MxNet,ONNX,Kaiai)导入和训练模型。

图像识别没你想的那么难!看完这篇你也能成专家

2019年6月2日

2019年6月2日

本地生活场景中包含大量极富挑战的计算机视觉任务,如菜单识别,招牌识别,菜品识别,商品识别,行人检测与室内视觉导航等。

研究人员发现用于3D视觉的神经元

2019年7月5日

2019年7月5日

英国纽卡斯尔大学的科学家在昆虫大脑中发现了计算3D距离和方向的神经元。了解这些可能有助于提高和发展机器人视觉应用。

图像分类和目标检测技术有什么区别?

2020年5月20日

2020年5月20日

图像分类和目标检测技术是计算机视觉领域的重要研究方法。这些技术帮助机器理解和识别实时对象和环境,帮助数字图像作为输入。多年来,计算机视觉技术已经被应用于多个领域,包括医疗保健、制造业、零售业等等。

计算机视觉的优点和局限性

2019年9月10日

2019年9月10日

计算机视觉是计算机科学的一个分支,它允许机器系统实时地查看、处理和解释视觉信息。

推动计算机视觉和视觉AI发展的四大关键趋势

2019年5月14日

2019年5月14日

本文讨论了推动视觉应用快速发展和影响行业未来的关键趋势,解释了这些趋势背后的推动因素,并强调了对技术供应商、解决方案开发者和最终用户的关键影响。

计算机视觉究竟是个怎样的行业?

2019年6月20日

2019年6月20日

5月1日外媒消息,微软刚刚发布了 Windows Vision Skills 的预览版本,是一个 NuGet 包集合。

计算机视觉软件市场的最新趋势

2018年8月9日

2018年8月9日

计算机视觉软件正在改变各个行业,不仅使消费者的生活更容易,而且让人产生兴趣。作为一个领域,计算机视觉已经获得了大量的宣传和投资。北美计算机视觉软件市场总投资额为1.2亿美元,而中国市场则飙升至39亿美元。

CV不只是安防,一文读懂计算机视觉产业链全局

2019年10月31日

2019年10月31日

作为计算机科学的分支,如今计算机视觉(Computer Vision,简称CV)已成为人工智能重要研究领域和发展方向,逐渐形成完整的产业链。

计算机视觉的最佳图像注释平台

2019年5月10日

2019年5月10日

我们一直在寻找最佳的图像注释平台,该平台提供多种功能、项目管理工具和注释过程的优化(当您需要注释50k图像时,每个图像减少1秒钟!)。

计算机视觉和图像处理之间有什么区别?

2018年8月9日

2018年8月9日

图像处理是计算机视觉的一个子集。计算机视觉系统利用图像处理算法对人体视觉进行仿真。例如,如果目标是增强图像以便以后使用,那么这可以称为图像处理。如果目标是识别物体、汽车自动驾驶,那么它可以被称为计算机视觉。

CMU的研究人员设计出利用计算机视觉来观察周围角落的新技术

2019年6月20日

2019年6月20日

未来的自动驾驶汽车和其他机器智能系统可能不需要视线来收集极其详细的图像数据:卡内基梅隆大学(Carnegie Mellon University)、多伦多大学(University of Toronto)和伦敦大学学院(University College London)的一项新研究设计出了一种“观察周围角落”的技术。

英伟达Jetson Nano定位于大众市场机器学习

2019年3月20日

2019年3月20日

GPU巨头英伟达(Nvidia)发布了用于大众市场产品的微型人工智能电脑Jetson Nano。

hotonic Vision通过视频开发激光雷达传感器

2019年5月8日

2019年5月8日

英国初创公司Photonic Vision开发了一种激光雷达飞行时间传感的颠覆性方法。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注