2021年1月20日 机器视觉与计算机视觉技术

神经科学与计算机视觉合作可以更好的理解视觉信息处理

神经科学家和计算机视觉科学家表示,一个空前庞大的新数据集将帮助研究人员更好地理解大脑是如何处理图像的。

卡内基梅隆大学和福德姆大学的研究人员今天在《科学数据》杂志上发表报告说,在这种规模下获得功能性磁共振成像(fMRI)扫描呈现出独特的挑战。

每位志愿者都参与了20个小时或更长时间的核磁共振扫描,这对他们的毅力和实验者协调扫描过程的能力都构成了挑战。为了解开与单个图像相关的神经反应,有必要做出一个极端的设计决策,即让相同的个体运行如此多的会话。

由此产生的数据集被称为BOLD5000,它使认知神经科学家能够更好地利用深度学习模型,这些模型极大地改善了人工视觉系统。深度学习最初受到人类视觉系统架构的启发,通过对人类视觉如何工作的新见解的追求,以及对人类视觉的研究更好地反映现代计算机视觉方法,可以进一步改进。为此,BOLD5000测量了从两个流行的计算机视觉数据集ImageNet和COCO中获取的图像所产生的神经活动。

“大脑科学和计算机科学的缠绕意味着科学发现可以在两个方向流动,共同作者Michael J. Tarr(Moura认知和脑科学教授,CMU心理系主任 ) 说 :“未来的视觉研究将使用BOLD5000数据集,这将有助于神经科学家更好地理解人类大脑中的知识组织。随着我们对视觉识别的神经基础了解得越来越多,我们也将更好地为人工视觉的进步做出贡献。”

该研究的主要作者、加州大学机器人研究所(CMU’s Robotics Institute)专攻计算机视觉的博士生Nadine Chang表示,计算机视觉科学家正将目光投向神经科学,以帮助在快速发展的人工视觉领域进行创新——这加强了这项研究的双向性。

“ Chang说:“计算机视觉科学家和视觉神经科学家本质上有着相同的最终目标:理解如何处理和解释视觉信息”。

从一开始,改善计算机视觉就是BOLD5000项目的重要组成部分。资深作者Elissa Aminoff,当时是CMU心理学系的博士后,现在是福特汉姆大学的心理学助理教授,与机器人研究所副教授Abhinav Gupta共同发起了这一研究方向。

将生物视觉和计算机视觉联系起来所面临的挑战之一是,大多数人类神经成像研究只包含很少的刺激图像——通常是100幅或更少——这些图像通常被简化为在中性背景下只描绘单个物体。相比之下,BOLD5000包含超过5000个真实世界的复杂场景图像、单个对象和交互对象。

该小组认为BOLD5000只是利用现代计算机视觉模型研究生物视觉的第一步。

“坦率地说,BOLD5000数据集仍然太小,”塔尔说,这表明一个合理的功能磁共振成像数据集需要至少50000刺激图像和更多的志愿者来取得进展的事实的深层神经网络用于分析视觉表象训练在数以百万计的图像。为此,研究小组希望他们能够生成5000个大脑扫描数据集,这将为人类视觉和计算机视觉科学家之间更大规模的合作铺平道路。

到目前为止,该领域的反应是积极的。公开可用的BOLD5000数据集已经被下载超过2500次。

除了Chang,Tarr,Gupta和Aminoff之外,研究团队还包括CMU-Pitt BRIDGE中心的高级研究科学家和科学运营总监John A. Pyles以及Tarr实验室的研究助理Austin Marcus。美国国家科学基金会,美国海军研究办公室,阿尔弗雷德·斯隆基金会和大川信息和电信基金会赞助了这项研究。

免责声明:AAAS和EurekAlert!不对发布到EurekAlert的新闻稿的准确性负责!通过EurekAlert系统提供机构或使用任何信息。

Banner
Related Posts

基于田间高光谱图像和机器学习估计芒果成熟度的光谱滤波器设计

2019年8月15日

2019年8月15日

本文旨在通过模拟几个具有不同真实光学滤波器的成像设备,开发一种新型滤波器选择方法,并利用高成本成像高光谱设备为特定应用设计一种成本较低的多光谱解决方案。

计算机视觉究竟是个怎样的行业?

2019年6月20日

2019年6月20日

5月1日外媒消息,微软刚刚发布了 Windows Vision Skills 的预览版本,是一个 NuGet 包集合。

最全分类!计算机视觉的图像标注类型及应用

2019年10月9日

2019年10月9日

计算机视觉的图像标注种类繁多,应用也不尽相同。想知道各种标注技术的效果吗?一起来看看它们在计算机视觉方面的应用和独特的案例吧!

英伟达Jetson Nano定位于大众市场机器学习

2019年3月20日

2019年3月20日

GPU巨头英伟达(Nvidia)发布了用于大众市场产品的微型人工智能电脑Jetson Nano。

计算机视觉软件市场的最新趋势

2018年8月9日

2018年8月9日

计算机视觉软件正在改变各个行业,不仅使消费者的生活更容易,而且让人产生兴趣。作为一个领域,计算机视觉已经获得了大量的宣传和投资。北美计算机视觉软件市场总投资额为1.2亿美元,而中国市场则飙升至39亿美元。

推动计算机视觉和视觉AI发展的四大关键趋势

2019年5月14日

2019年5月14日

本文讨论了推动视觉应用快速发展和影响行业未来的关键趋势,解释了这些趋势背后的推动因素,并强调了对技术供应商、解决方案开发者和最终用户的关键影响。

新的过滤器增强了机器人对6D姿态评估的视觉感知能力

2019年8月7日

2019年8月7日

研究人员最近进行了一项关于6D物体姿态估计的研究,目的是开发一种过滤器,使机器人具有更强的空间感知能力,从而能够更准确地操纵物体和在空间中导航。

利用计算机视觉和机器学习技术实现莴苣种植的精准化作业

2019年6月11日

2019年6月11日

Earlham Institute的研究人员开发了一个机器学习平台,使用计算机视觉和航拍图像对莴苣作物进行分类。

掌握计算机视觉开发技能的8个步骤

2019年8月5日

2019年8月5日

在与几位致力于人工智能和计算机视觉项目的开发人员交谈之后,我提出了八个步骤,成为一名出色的计算机视觉开发人员。但是,在深入研究每个步骤之前,让我们看一下计算机视觉技术最适合的案例:

富士通发布了新的AI计算机视觉软件以简化行为识别培训

2019年12月5日

2019年12月5日

富士通开发了一种基于人工智能的新方法,可以对视频片段进行行为分析,据该公司公告称,它可以识别出一系列细微而复杂的人类活动,而无需大量的培训数据。

hotonic Vision通过视频开发激光雷达传感器

2019年5月8日

2019年5月8日

英国初创公司Photonic Vision开发了一种激光雷达飞行时间传感的颠覆性方法。

计算机视觉的最佳图像注释平台

2019年5月10日

2019年5月10日

我们一直在寻找最佳的图像注释平台,该平台提供多种功能、项目管理工具和注释过程的优化(当您需要注释50k图像时,每个图像减少1秒钟!)。

机器学习和模式识别之间有什么区别?

2019年10月12日

2019年10月12日

模式识别是机器学习的工程应用。机器学习处理可以从数据中学习的系统的构建和研究,而不是仅遵循明确编程的指令,而模式识别是对数据中模式和规律性的识别。

自动机器视觉初创企业Nexar发布实时互动地图产品

2019年7月19日

2019年7月19日

导引 :该公司在声明中表示,通过将用户提供的更新数据与汽车摄像头和传感器的Nexar数据相连接,该公司的地图可以实时警告驾驶员道路的危险,施工区域和道路标志的丢失等

增强的机器人“视觉”能够与人类进行更自然的互动

2019年5月9日

2019年5月9日

在伦斯勒理工学院(Rensselaer Polytechnic Institute)的智能系统实验室里,一个名叫Pepper motors的机器人睁大了眼睛,说话轻声细语。其中一名研究人员对“小辣椒”进行了测试,当“小辣椒”准确描述自己在做什么的时候,它会做出各种各样的手势。当他交叉双臂时,机器人从他的肢体语言中识别出有什么不对劲。

Comments
发表评论

电子邮件地址不会被公开。 必填项已用*标注